21 research outputs found

    Comparing the Performance of Random Forest, SVM and Their Variants for ECG Quality Assessment Combined with Nonlinear Features

    Get PDF
    For evaluating performance of nonlinear features and iterative and non-iterative classification algorithms (i.e. kernel support vector machine (KSVM), random forest (RaF), least squares SVM (LS-SVM) and multi-surface proximal SVM based oblique RaF (ORaF) for ECG quality assessment we compared the four algorithms on 7 feature schemes yielded from 27 linear and nonlinear features including four features derived from a new encoding Lempel–Ziv complexity (ELZC) and the other 26 features. Seven feature schemes include the first scheme consisting of 7 waveform features, the second consisting of 15 waveform and frequency features, the third consisting of 19 waveform, frequency and approximate entropy (ApEn) features, the fourth consisting of 19 waveform, frequency and permutation entropy (PE) features, the fifth consisting of 19 waveform, frequency and ELZC features, the sixth consisting of 23 waveform, frequency, PE and ELZC features, and the last consisting of all 27 features. Up to 1500 mobile ECG recordings from the Physionet/Computing in Cardiology Challenge 2011 were employed in this study. Three indices i.e., sensitivity (Se), specificity (Sp) and accuracy (Acc), were used for evaluating performances of the classifiers on the seven feature schemes, respectively. The experiment results indicated PE and ELZC can help to improve performance of the aforementioned four classifiers for assessing ECG quality. Using all features except ApEn features obtained the best performances for each classifier. For this sixth scheme, the LS-SVM yielded the highest Acc of 92.20% on hidden test data, as well as a relatively high Acc of 93.60% on training data. Compared with the other classifiers, the LS-SVM classifier also demonstrated the superior generalization ability

    Modelling arterial pressure waveforms using Gaussian functions and two-stage particle swarm optimizer

    Get PDF
    Changes of arterial pressure waveform characteristics have been accepted as risk indicators of cardiovascular diseases. Waveform modelling using Gaussian functions has been used to decompose arterial pressure pulses into different numbers of subwaves and hence quantify waveform characteristics. However, the fitting accuracy and computation efficiency of current modelling approaches need to be improved. This study aimed to develop a novel two-stage particle swarm optimizer (TSPSO) to determine optimal parameters of Gaussian functions. The evaluation was performed on carotid and radial artery pressure waveforms (CAPW and RAPW) which were simultaneously recorded from twenty normal volunteers. The fitting accuracy and calculation efficiency of our TSPSO were compared with three published optimization methods: the Nelder-Mead, the modified PSO (MPSO), and the dynamic multiswarm particle swarm optimizer (DMS-PSO). The results showed that TSPSO achieved the best fitting accuracy with a mean absolute error (MAE) of 1.1% for CAPW and 1.0% for RAPW, in comparison with 4.2% and 4.1% for Nelder-Mead, 2.0% and 1.9% for MPSO, and 1.2% and 1.1% for DMS-PSO. In addition, to achieve target MAE of 2.0%, the computation time of TSPSO was only 1.5 s, which was only 20% and 30% of that for MPSO and DMS-PSO, respectively

    Atrial Fibrillation Beat Identification Using the Combination of Modified Frequency Slice Wavelet Transform and Convolution Neural Networks

    Get PDF
    Atrial fibrillation (AF) is a serious cardiovascular disease with the phenomenon of beating irregularly. It is the major cause of variety of heart diseases, such as myocardial infarction. Automatic AF beat detection is still a challenging task which needs further exploration. A new framework, which combines modified frequency slice wavelet transform (MFSWT) and convolutional neural networks (CNNs), was proposed for automatic AF beat identification. MFSWT was used to transform 1-s electrocardiogram (ECG) segments to time-frequency images, then the images were fed into a 12-layer CNN for feature extraction and AF/non-AF beat classification. The results on the MIT-BIH Atrial Fibrillation database showed that a mean accuracy (Acc) of 81.07% from 5-fold cross validation is achieved for the test data. The corresponding sensitivity (Se), specificity (Sp) and the area under ROC curve (AUC) results are 74.96%, 86.41% and 0.88. When excluding an extreme poor signal quality ECG recording in the test data, a mean Acc of 84.85% is achieved, with the corresponding Se, Sp and AUC values of 79.05%, 89.99% and 0.92. This study indicates that it is possible to accurately identify AF or non-AF ECGs from a short-term signal episode

    A signal quality assessment method for mobile ECG using multiple features and fuzzy support vector machine

    No full text
    A signal quality assessment method for mobile ECG based on fuzzy support vector machines (FSVM) and multi-feature was proposed to help users to determine whether the ECG recordings collected using mobile phone are acceptable or not. The proposed method mainly included two modules: feature extraction and an intelligent classification approach, i.e. a FSVM classifier. First, 27 features derived from the baseline drift, the high or low amplitude, and the power spectrum of ECG were quantized and extracted to serve as the inputs of FSVM classifier. Then grid search (GS) was employed to optimize the parameters (σ, C) for FSVM classifier. Finally, the performance of FSVM classifier was verified by comparing with the results of a kernel SVM (KSVM) classifier. Results showed that for 1,000 training mobile ECG recordings from the set A in PhysioNet/Computing in Cardiology Challenge 2011 database, the proposed FSVM classifier yielded a classification accuracy of 94.50% (vs. 93.90% for the KSVM classifier). For the 500 test mobile ECG recordings from the set B database, classification accuracies were 91.40% for the KSVM classifier vs. 92.00% for the FSVM classifier

    A Novel Robust Fuzzy Rough Set Model for Feature Selection

    No full text
    The existing fuzzy rough set (FRS) models all believe that the decision attribute divides the sample set into several “clear” decision classes, and this data processing method makes the model sensitive to noise information when conducting feature selection. To solve this problem, this paper proposes a robust fuzzy rough set model (RS-FRS) based on representative samples. Firstly, the fuzzy membership degree of the samples is defined to reflect its fuzziness and uncertainty, and RS-FRS model is constructed to reduce the influence of the noise samples. RS-FRS model does not need to set parameters for the model in advance and can effectively reduce the complexity of the model and human intervention. On this basis, the related properties of RS-FRS model are studied, and the sample pair selection algorithm (SPS) based on RS-FRS is used for feature selection. In this paper, RS-FRS is tested and analysed on the open 12 datasets. The experimental results show that RS-FRS model proposed can effectively select the most relevant features and has certain robustness to the noise information. The proposed model has a good applicability for data processing and can effectively improve the performance of feature selection

    Multivariable Fuzzy Measure Entropy Analysis for Heart Rate Variability and Heart Sound Amplitude Variability

    No full text
    Simultaneously analyzing multivariate time series provides an insight into underlying interaction mechanisms of cardiovascular system and has recently become an increasing focus of interest. In this study, we proposed a new multivariate entropy measure, named multivariate fuzzy measure entropy (mvFME), for the analysis of multivariate cardiovascular time series. The performances of mvFME, and its two sub-components: the local multivariate fuzzy entropy (mvFEL) and global multivariate fuzzy entropy (mvFEG), as well as the commonly used multivariate sample entropy (mvSE), were tested on both simulation and cardiovascular multivariate time series. Simulation results on multivariate coupled Gaussian signals showed that the statistical stability of mvFME is better than mvSE, but its computation time is higher than mvSE. Then, mvSE and mvFME were applied to the multivariate cardiovascular signal analysis of R wave peak (RR) interval, and first (S1) and second (S2) heart sound amplitude series from three positions of heart sound signal collections, under two different physiological states: rest state and after stair climbing state. The results showed that, compared with rest state, for univariate time series analysis, after stair climbing state has significantly lower mvSE and mvFME values for both RR interval and S1 amplitude series, whereas not for S2 amplitude series. For bivariate time series analysis, all mvSE and mvFME report significantly lower values for after stair climbing. For trivariate time series analysis, only mvFME has the discrimination ability for the two physiological states, whereas mvSE does not. In summary, the new proposed mvFME method shows better statistical stability and better discrimination ability for multivariate time series analysis than the traditional mvSE method

    An Improved Sliding Window Area Method for T Wave Detection

    No full text
    Background. The T wave represents ECG repolarization, whose detection is required during myocardial ischemia, and the first significant change in the ECG signal is being observed in the ST segment followed by changes in other waves like P wave and QRS complex. To offer guidance in clinical diagnosis, decision-making, and daily mobile ECG monitoring, the T wave needs to be detected firstly. Recently, the sliding area-based method has received an increasing amount of attention due to its robustness and low computational burden. However, the parameter setting of the search window’s boundaries in this method is not adaptive. Therefore, in this study, we proposed an improved sliding window area method with more adaptive parameter setting for T wave detection. Methods. Firstly, k-means clustering was used in the annotated MIT QT database to generate three piecewise functions for delineating the relationship between the RR interval and the interval from the R peak to the T wave onset and that between the RR interval and the interval from the R peak to the T wave offset. Then, the grid search technique combined with 5-fold cross validation was used to select the suitable parameters’ combination for the sliding window area method. Results. With respect to onset detection in the QT database, F1 improved from 54.70% to 70.46% and 54.05% to 72.94% for the first and second electrocardiogram (ECG) channels, respectively. For offset detection, F1 also improved in both channels as it did in the European ST-T database. Conclusions. F1 results from the improved algorithm version were higher than those from the traditional method, indicating a potentially useful application for the proposed method in ECG monitoring

    Comparison of four recovery algorithms used in compressed sensing for ECG signal processing

    No full text
    Abstract: Compressed Sensing (CS) has been used in ECG signal compressing with the rapid development of real-time & dynamic ECG applications. Signal reconstruction process is an essential step in CS-based ECG processing. Many recovery algorithms have been reported in the last decades. However, the comparative study on their reconstructing performances for CS-based ECG signal processing lacks, especially in real-time applications. This study aimed to investigate this issue and provide useful information. Four typical recovery algorithms, i.e., compressed sampling matching pursuit (CoSaMP), orthogonal matching pursuit (OMP), expectation-maximum-based block sparse Bayesian learning (BSBLEM) and bound-optimization-based block sparse Bayesian learning (BSBL BO) were compared. Two performance indices, i.e., the percentage of root-mean-square difference (PRD) and the reconstructing time (RT), were tested to observe their changes with the change of compression ratio (CR). The results showed that BSBL_BO and BSBL_EM methods had better performances than OMP and CoSaMP methods. More specifically, BSBL_BO reported the best PRD results while BSBL_EM achieved the best RT index

    Interhemispheric Brain Switching Correlates with Severity of Sleep-Disordered Breathing for Obstructive Sleep Apnea Patients

    No full text
    (1) Background: Alternating interhemispheric slow-wave activity during sleep is well-established in birds and cetaceans, but its investigation in humans has been largely neglected. (2) Methods: Fuzzy entropy was used to calculate a laterality index (LI) from C3 and C4 EEG channels. The subjects were grouped according to an apnoea-hypopnoea index (AHI) for statistical analyses: Group A AHI < 15 (mild); Group B 15 ≤ AHI < 30 (moderate); Group C AHI ≥ 30 (severe). The LI distribution was analysed to characterise the brain activity variation in both hemispheres, and the cross-zero switching rate was given statistical tests to find the correlations with the severity of obstructive sleep apnea and sleep states, i.e., wake (W), light sleep (LS), deep sleep (DS), and REM. (3) Results: EEG brain switching activity was observed in all sleep stages, and the LI distribution shows that, for obstructive sleep apnea patients, the interhemispheric asymmetry of brain activity is more obvious than healthy people. A one-way ANOVA revealed a significant difference of switching rate among three groups (F(2,95) = 7.23, p = 0.0012), with Group C shows the least, and also a significant difference among four sleep stages (F(3,94) = 5.09, p = 0.0026), with REM the highest. (4) Conclusions: The alternating interhemispheric activity is confirmed ubiquitous for humans during sleep, and sleep-disordered breathing intends to exacerbate the interhemispheric asymmetry
    corecore